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LM-2: Black Body Radiation

Rayleigh-Jean's Law

8 2
Uv)dv = ———kpT dv
c
Planck's Law
8/ hv 8?2 hv/kpT
U(v)dv = 5 T 1 dv=——ksT T

o= Wkl dh btain:

Q = m, an us we obtaln:
8m1? .
U(v)dv = kgT dv - QC(quantum correction)

LM-3: Compton Effect

h

mecC

XN —A=

(1 — cos#)

LM-4: Heat Capacity and Quantum Theory

Heat Capacity of Gases

R

S
)

Where f is the number of degrees of freedom of the molecules of the gas

Energy available per molecule at room temperature is given by
E/molecule ~ 25meV

Dulong-Petit's Law: Classical Theory for heat capacity of solids

for a single atom moving in one direction (E) = kgT

for a single atom moving in all 3 directions (E) = 3kgT
E =3NkpT = 3RT

= — =3R
dr

Cy



Einstein's Quantum Mechanical Theory for heat capacity of Solids

1
En: <n—|— 5) 'hl/E

for one direction:

hv
ehv/ksT _ 1
and for that same atom oscillating in all 3 directions, we have:
3hv
ehw/ksT _ 1

3hv hv/kgT hv/kgT
E=N- chv/ksT _ 1 3NkgT - chv/ksT _ 1 LS ohv/ksT _ 1

We define 05 = hv/kp as the Einstein temperature of the solid and thus get

0 /T

B=3RT-

In all the equations stated above, v = vg, which is known as the Einstein

frequency of the solid.

Debye Model
A few new assumptions made by Debye

Vmaz = VD
)\min - )\D
Ap = 2d where d is distance between atoms

At low temperatures
¢y ox T3
LM-5: Wave Particle duality and de Broglie's hypothesis

de Broglie Hypothesis

Ap =

SRS



Bragg's Law

(path difference) A\ = 2d sin 6

Where 6 is the angle of the incident rays with the surface of the lattice.

Davisson-Germer Experiment

We generally look at only first order phenomena, ie AX = ), and find that for the
angle b/w the electron gun and detector being ¢ and applying Bragg's Law, we
get

A = 2dsinf = 2d cos ¢/2

LM-6: Wave Packets, Group Velocity and Phase Velocity

Here are some basic and useful formulas to keep in mind from here on

h
= hk = —
b )
P 1
for particles: E = — = —mu?
2m 2

for photons: £ = hw = hv

Group and Phase Velocity

vp = % = VA
dw
’Ug = %
For photons, we also define
w FE
’Up = E = ?
o do _dE
97 4k dp

Dispersive and non-dispersive mediums
Whenever v, # v, we say that the medium is dispersive:

o if vp > vy = normal dispersion

o if vy > v, = anomalous dispersion

When we have the condition v, = v, we say that medium is non dispersive.



LM-7: Fourier Transform and Heisenberg's Uncertainty
Principle

Heisenberg's Uncertainty Principle

1. Interms of momentum and position

Apy, - Ak > g where k € {z,y, z}

2. Interms of energy and time

AE - At >

N | St

LM-8: The Schrodinger Equation and its properties

Schrodinger Equation

e Time Dependent Schrodinger Equation(TDSE)

B2 920 o
Lt 77 U — jh
om om2 T UY T g

o Time Independent Schrédinger Equation(TISE)

K2 9?0
. LUV =EY
oo U

Normalisation of a wave function



Observables and Operators

Obesrvable Symbol
Position z
Momentum P
Potential Energy U
Kinetic Energy K
Total Energy E

For a normalised wave function:

(0) = / T*OWde

o0

<o2>:/ 70" Wdz

o0

Eigen functions and values

OV = ¥

A

e U isan Eigen function of the operator O
e eisthe Eigen value

LM-9: Free Particle

We take the potential to be 0 and the energy of the particle to be some value E.

Now, we can solve the Schrodinger equation in the following way:

R2 0?0
——— _ —FEV
2m Ox2

Solving this, we get simply,

U = Asinkx + Bcoskzx

Operator



LM-10: Particle in a Box

The equation

The form of the potential energy for a particle in a box is

0 0<x<L
oo else

V(z) = {

The Schrodinger equation for a particle in a box is as follows

2 92
_h_B\IJ — EV
2m Ox?

Solutions:

U, (z) = \/%sin(%ac)

b nw V2m
L h
n=1,2,3
Expression for energy:
B, — K2 k2 22 h2 2 2 h?
2m 2m L2 8mL2

The minimum energy which the system has in its ground state is called the Zero

Point Energy.
Orthonormality
Whenever n # m:

(U, |¥,) =0

Adding time dependence

The time dependent solution of the above general equation can be found by

multiplying a factor of exp(—iE,t/h)

v, (z,t) = @sin(%w) exp(—iE,t/h)

To find E,, the formula mentioned before can be used.



Probability of observing a particular wave function on
measurement

The probability is proportional to the square of its coefficient
P(n) = |ca|’
Finding the coefficient of a particular state in an arbitrary

solution

o Take the function ¥ at t =0
o Now take the conjugate of the function ¥, (z), which will be ¥3

e Now simply find the following integral(assuming normalization)

o0

Cp = (¥, (2)|¥(z,0)) = / U (2)¥(x,0)dx

—00

Finding Energy of the general solution
=1

LM-11: Particle in Finite Potential Box

In this case we consider the potential to look like:

V(w):{o 0<z<L
Vo else
Solutions of TISE for regions of constant potential
ItE <V,
¥ = Aexp(az) + Bexp(—ax)
2m(Vo — E)

N e

ItE >V,

U = Aexp(ikz) + Bexp(—ikz) = A’ sinkz + B’ coskz

L [mE=W)
h2



Solution of TISE for Particle in a finite box
U, ¥y, ¥3 correspond to the regions (—o0,0), (0, L) and (L, co) respectively.

We are considering E < V.

¥, = Aexp(az) + Bexp(—ax)
Wy = Csinkzx + Dcoskx
U3 = Gexp(ax) + H exp(—azx)

The boundary conditions:

¥1(0) = ¥2(0)

¥3(0) = ¥2(0)

¥ (0) = ¥, (0)

¥3(0) = ¥5(0)
\1’1(—00) =0
U3(c0) =0

Some direct simplifications we get by the last two conditions are: B=0and G = 0

Energy states for particle in a finite potential box

We won't really be finding the coefficients from the above equations, but rather a
relation between the coefficients to get us a way to relate to the total energy of a

stationary state.

First note that:

2
Define k% = mVO,then,
B2
o =k — K
« [B
— =42
— %\ R
KW
aﬂdk—2:E
e _ = N
— k:_f(E)_ T 1
(ko L/2)
= f(k) = [ 1
(kL/2)

Now, also notice that by solving the equations in the previous section, we can

obtain the following equation:



acoskl — ksinkL B

asinkLl + kcoskL
a/k —tankL

1+ a/ktankL

> Q =|Q

Solving the above equation, we can obtain:

tankL/2 = a/k
OR
—cotkL/2 =a/k

Now using the above equation, we can solve for values of energy graphically. We
will plot the graph taking kL/2 on the x axis and the value of each of the RHS and

LHS functions on the y axis. The intersections of the graphs will give us the

solutions.
o . . . .
o [ l® ° °
(4 ° ° ° °
o [} ° ° °
L)l ° '] e '
(4 [} ° ° °
: : : : :
6 : ° ° ° °
o : . . .
° ° ° °
° ° ° °
° ® ° ®
° ° ° °
[ ] o ® [ ]
e o ® ®
[ ] o ® [ ]
4 : ° ° E °
M . q .
[ ] o o (J
® T ° | | °
. . . ; .
e (R O | | (]
° ° ° ° [
: & 3 : $
5 : : : : :
E ® ° ° ° °
: FIONG LA
: 0: ‘\:\ ..
— e ! o ! ! o
4 ° ° ° °
o ° ° ° °
.. | .‘. | | ... | ... | o o
0 ...o. 2 ..o. 4 ..o. . ..6. ..o. 8
° ) ° ° °
° o ° °
.. I ..' .} I .. '..

Each purple line(graph of tanz) in the above graph meets the x axis at z = nm and
each of the black lines(graph of — cot ) meets the x axis atz = (2n + 1)7/2 where
nis an integer. The green line is the graph of the function f(k) as defined above.

Penetration length



Approximation to infinite potential box
It can be approximated to an infinite potential box of length L + 26,,. This this
approximation may be used to attain approximate values of energy.

LM-12: Step Potential, Scattering and Tunneling

Basic Step potential

The potential in this case is of the form

0 <0

V(“’):{VO z >0

The solution to the TISE will look like

for E >V
U, = Aefi® 4 Beih®
‘112 — Ceikg:r +Defik2z
for £ <V
U, = Ae't® 4 Be ke
\I/z = De‘“’ + C’e“m

Where o, k, k1 and ks take their regular values based on the potential in their region and the total

energy.
¥, and ¥, correspond to the first and second region respectively.
Consider the case E > V.

It is elementary to see that D = 0. The rest of the coefficients can be found by

applying boundary conditions:

. k;l = k2 4
U, — A ik ik
' {e " <’<’1 + k2 ) ‘ }

Ty = A (L) eihes
? K’flﬂ”@)e ]

Transmission and Reflection coefficients

Transmission and reflection coefficients add up to 1
T+R=1

For the case where E > Vj



Rk gf_ﬁ ki —ky|* (ki — k)’
kilA ki k1 + ko (kl + k2)2

T:k_zg:@ 2k4 2: 4k ks
kil A ki ki + ko (k’l + k2)2

For the case where E <
Now, we will simply replace k; with k and k, with ic, giving us:

2

_k‘

k

k—ia
k -+ ia

Penetration length

We define penetration length for the case where E < V; as:
1
f==
(04

Step potential of finite width and Tunneling

The potential is of the form

0 =<0
Vi) =¢Vy, 0<z<L
0 x>1L

Form of solutions

‘1/1 _ Aeikm _i_Befikm
for £ >V

T, — Ceik’x + De—ik'a:
for E <V

Uy = De*® + Ce
‘1,3 _ Feikm 4+ Gefikm

Where a, k and k' take their regular values based on the potential in their region and the total
energy.
Again, we get that G=0.

The rest of the coefficients can be found by applying the boundary conditions



Reflection and Transmission coefficient
The reflection and transmission coefficients are defined as

F2

2
1T:‘_

B
R_h A

We also have the relation:
T+R=1

By solving for the coefficients, we arrive at the following formula for transmission

coefficient

for E <V

T 1+1 Ve inh? oL
= — — S1n o
4 E(Vy - E)

forE>‘;})

ro il
= + -
4 E(E - W)

-1
sin® k'L

The maximum value(T,,,, = 1) of T will be achieved whensink'L =0, ie, k'L = nn.

Only certain values of L will give this result. This effect is called resonance.
Penetration length

We define penetration length for the case where E < V; as:
1
0= —
(6

LM-14: Quantum Harmonic Oscillator

The potential function in the case of a QHO looks like

1 1
V(z) = Ek:mz = amw2x2
Ground state solution
U(z) = Ae B

"A" can be found using the normalization condition, using which we get

A= +/B/r'/*

Higher solutions:
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Energy values

1
n=01,2..

LM-15: Application of Quantum Phenomena in higher
dimensions

We simply assume the function to be a product of its "components"(not really) in

the three directions
¥(z,y,2) = X(2)Y(y)Z(2)

Now, after putting this into the TISE, we can see that this can be treated
independently in all three directions, the way we have been solving them in 1D.
Thus, each one of X,Y, Z is an independent solution of the 1D form and

depends on a three independent parameters, say n,,n,, n,.

E(ng,ny,n;) = E;(n;) + Ey(ny) + E.(n,)



LM-16: Fundamentals of Statistical Mechanics

Number of particles by energy

is the number of particles between energies E and E + dE.

e f(E) is called the distribution function
o g(E)dE is called the density of states

Types of Particles
Property Classical Fermions Bosons
Indistinguishable (™)
Follow Pauli's Exclusion Principle (*) -
Spin - Half Integer Integer
Wave function’ - Anti-Symmetric | Symmetric

1 The wave function row refers to symmetry of the wave function with respect to exchange of

variables
LM-17: Density of States
In the quasi-continuous limit, we say that:
9 — 9(E)dE
Density of states(in 3D) for particle in a box

vV [2m\*?
g(E)dG = H(ﬁ) \/Ede

This expression is sometimes divided by volume to obtain density of states per

unit volume.

In case of fermions, we must multiply by a "degeneracy factor", which is 2 for the

case of electrons.



LLM-18: Classical distribution function

The dominant configuration

The configuration that has the highest probability of occurring out of all the
others is called the dominant configuration or equilibrium configuration.

The constraints within which we maximize are:

ZNi:N
ZNiEi:E

where N; is the number of particles in states having energy E;
Maxwell-Boltzmann statistics

Number of micro-states for a configuration with N; classical particles in a state of

energy E; with degeneracy of g;:

N |
TIN:! I1s"

Discrete energy states

Where ¢, is the degeneracy of the states with energy E; and N; is the total

number of particles in all energy states with energy FE;

N; = giAexp(—E; /kT)
N
> gi exp(—E; /kT)

where A =

This can also be expressed in the form of probability as:

Quasi-continuous energy states

fup(€) = Aexp(—e/kT)
N

[ g(€) exp(—e€/kT)de

where A =

The value of A is calculated using the expression for total number of particles.



LM-19: Quantum Distribution functions

Bose-Einstein statistics

Number of micro-states for a configuration with N; bosons in a state of energy E;

with degeneracy of g;:

(N; + g; — 1)!
H N;l(gi — 1)!

We maximize the above expression to find the dominant state and arrive at the

condition for the Bose-Einstein statistics to obtain:

9i
N; =
Aexp(E; /kKT) — 1

In the quasi-continuous approximation, we get:

1
~ Aexp(e/kT) — 1

fpE(€)

The value of A is calculated using the expression for total number of particles.

Fermi-Dirac statistics

Number of micro-states for a configuration with N; fermions in a state of energy

E; with degeneracy of g;:
gi!

We maximize the above expression to find the dominant state and arrive at the

condition for the Fermi-Dirac statistics to obtain:

gi
exp((E; — Ep)/kT) + 1

N; =

In the quasi-continuous approximation, we get:

1

fro(e) = exp((c — e7)/KT) + 1

In this equation, the constant that should have been there, has been replaced by
the term ez or the Fermi Energy.

NOTE: At T = 0K, the Fermi-Dirac function becomes 1 at all values of € that are

less than ez and 0O for all values that are larger



Some more topics

Relativistic effects
When to consider it:

e visclosetoc
o Energy/Kinetic Energy of electron is comparable to or larger than rest

energy of electron( m.c? = 511keV )

What are the effects of considering relativity:

o Ejp = 4/mic* +p*c? , this includes the rest mass energy

o KE = Eipjq — moc® , where E,.g = moc?
o Now you may not use KE = p*/2m and should use only the above

definition
Dirac notation

Not needed in the exam, but | have used it in this document, so here it is(there is

more to it than this, but for us, this is enough):

(A|B) = /A*B da

(A|OB) = (A|O|B) = /A*OB dz
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