H1 PH107 Formulas - Endsem

H6 *Joyfully crafted by Jujhaar Singh :)*

[PH107 Formulas - Endsem](#page-0-0)

[Joyfully crafted by Jujhaar Singh :\)](#page-0-1)

[LM-2: Black Body Radiation](#page-4-0)

[Rayleigh-Jean's Law](#page-4-1)

[Planck's Law](#page-4-2)

[LM-3: Compton Effect](#page-4-3)

- [LM-4: Heat Capacity and Quantum Theory](#page-4-4)
	- [Heat Capacity of Gases](#page-4-5)

[Dulong-Petit's Law: Classical Theory for heat capacity of solids](#page-4-6) [Einstein's Quantum Mechanical Theory for heat capacity of](#page-5-0) Solids

[Debye Model](#page-5-1)

[LM-5: Wave Particle duality and de Broglie's hypothesis](#page-5-2)

[de Broglie Hypothesis](#page-5-3)

[Bragg's Law](#page-6-0)

[Davisson-Germer Experiment](#page-6-1)

[LM-6: Wave Packets, Group Velocity and Phase Velocity](#page-6-2)

[Group and Phase Velocity](#page-6-3)

[Dispersive and non-dispersive mediums](#page-6-4)

- [LM-7: Fourier Transform and Heisenberg's Uncertainty Principle](#page-7-0) [Heisenberg's Uncertainty Principle](#page-7-1)
- [LM-8: The Schrödinger Equation and its properties](#page-7-2)
	- [Schrödinger Equation](#page-7-3)

[Observables and Operators](#page-8-0)

[Eigen functions and values](#page-8-1)

[LM-9: Free Particle](#page-8-2)

[LM-10: Particle in a Box](#page-9-0)

- [The equation](#page-9-1)
- **[Orthonormality](#page-9-2)**
- [Adding time dependence](#page-9-3)
- [Probability of observing a particular wave function on](#page-10-0)
- measurement

[Finding the coefficient of a particular state in an arbitrary](#page-10-1) solution [Finding Energy of the general solution](#page-10-2) [LM-11: Particle in Finite Potential Box](#page-10-3) [Solutions of TISE for regions of constant potential](#page-10-4) [Solution of TISE for Particle in a finite box](#page-11-0) [Energy states for particle in a finite potential box](#page-11-1) [Penetration length](#page-12-0) [Approximation to infinite potential box](#page-13-0) [LM-12: Step Potential, Scattering and Tunneling](#page-13-1) [Basic Step potential](#page-13-2) [Transmission and Reflection coefficients](#page-13-3) [Penetration length](#page-14-0) [Step potential of finite width and Tunneling](#page-14-1) [Form of solutions](#page-14-2) [Reflection and Transmission coefficient](#page-15-0) [Penetration length](#page-15-1) [LM-14: Quantum Harmonic Oscillator](#page-15-2) [LM-15: Application of Quantum Phenomena in higher](#page-16-0) dimensions [LM-16: Fundamentals of Statistical Mechanics](#page-17-0) [Number of particles by energy](#page-17-1) [Types of Particles](#page-17-2) [LM-17: Density of States](#page-17-3) [Density of states\(in 3D\) for particle in a box](#page-17-4) [LM-18: Classical distribution function](#page-18-0) [The dominant configuration](#page-18-1) [Maxwell-Boltzmann statistics](#page-18-2) [Discrete energy states](#page-18-3) [Quasi-continuous energy states](#page-18-4) [LM-19: Quantum Distribution functions](#page-19-0)

[Bose-Einstein statistics](#page-19-1)

[Fermi-Dirac statistics](#page-19-2) [Some more topics](#page-20-0) [Relativistic effects](#page-20-1) [Dirac notation](#page-20-2)

H2 LM-2: Black Body Radiation

H3 Rayleigh-Jean's Law

$$
U(\nu)d\nu = \frac{8\pi\nu^2}{c^3}k_BT\ d\nu
$$

H3 Planck's Law

$$
U(\nu)d\nu = \frac{8\pi\nu^2}{c^3} \cdot \frac{h\nu}{e^{h\nu/k_BT} - 1} d\nu = \frac{8\pi\nu^2}{c^3} k_BT \cdot \frac{h\nu/k_BT}{e^{h\nu/k_BT} - 1} d\nu
$$

$$
QC = \frac{h\nu/k_BT}{e^{h\nu/k_BT} - 1}, \text{ and thus we obtain:}
$$

$$
U(\nu)d\nu = \frac{8\pi\nu^2}{c^3} k_BT d\nu \cdot QC(\text{quantum correction})
$$

H2 LM-3: Compton Effect

$$
\lambda'-\lambda=\frac{h}{m_ec}(1-\cos\theta)
$$

H2 LM-4: Heat Capacity and Quantum Theory

H3 Heat Capacity of Gases

$$
c_v=\frac{f}{2}R
$$

Where f is the number of degrees of freedom of the molecules of the gas

Energy available per molecule at room temperature is given by $E/molecule \approx 25 meV$

H3 Dulong-Petit's Law: Classical Theory for heat capacity of solids

for a single atom moving in one direction $\langle E \rangle = k_B T$ for a single atom moving in all 3 directions $\langle E \rangle = 3k_BT$

$$
E=3Nk_BT=3RT
$$

$$
c_v=\frac{dE}{dT}=3R
$$

H3 Einstein's Quantum Mechanical Theory for heat capacity of Solids

$$
E_n = \left(n + \frac{1}{2}\right) \cdot h \nu_E
$$

for one direction: $E=\frac{h\nu}{e^{h\nu/k_BT}-1}$

and for that same atom oscillating in all 3 directions, we have:

$$
E=\frac{3h\nu}{e^{h\nu/k_BT}-1}
$$

$$
E=N\cdot\frac{3h\nu}{e^{h\nu/k_BT}-1}=3Nk_BT\cdot\frac{h\nu/k_BT}{e^{h\nu/k_BT}-1}=3RT\cdot\frac{h\nu/k_BT}{e^{h\nu/k_BT}-1}
$$

We define $\theta_E = h\nu/k_B$ as the Einstein temperature of the solid and thus get

$$
E=3RT\cdot\frac{\theta_E/T}{e^{\theta_E/T}-1}
$$

In all the equations stated above, $\nu = \nu_E$, which is known as the Einstein frequency of the solid.

H3 Debye Model

A few new assumptions made by Debye

$$
\nu_{max} = \nu_D
$$

$$
\lambda_{min} = \lambda_D
$$

$$
\lambda_D = 2d \text{ where d is distance between atoms}
$$

At low temperatures

$$
c_v \propto T^3
$$

H2 LM-5: Wave Particle duality and de Broglie's hypothesis

H3 de Broglie Hypothesis

$$
\lambda_D=\frac{h}{p}
$$

H3 Bragg's Law

 $(\text{path difference})\Delta\lambda = 2d\sin\theta$

Where θ is the angle of the incident rays with the surface of the lattice.

H3 Davisson-Germer Experiment

We generally look at only first order phenomena, ie $\Delta \lambda = \lambda$, and find that for the angle b/w the electron gun and detector being ϕ and applying Bragg's Law, we get

 $\lambda = 2d \sin \theta = 2d \cos \phi/2$

H2 LM-6: Wave Packets, Group Velocity and Phase Velocity

Here are some basic and useful formulas to keep in mind from here on

$$
p = \hbar k = \frac{h}{\lambda}
$$

for particles: $E = \frac{p^2}{2m} = \frac{1}{2}mv^2$
for photons: $E = \hbar \omega = h\nu$

H3 Group and Phase Velocity

$$
v_p = \frac{\omega}{k} = \nu \lambda
$$

$$
v_g = \frac{d\omega}{dk}
$$

For photons, we also define

$$
v_p = \frac{\omega}{k} = \frac{E}{p}
$$

$$
v_g = \frac{d\omega}{dk} = \frac{dE}{dp}
$$

H3 Dispersive and non-dispersive mediums

Whenever $v_g \neq v_p$ we say that the medium is dispersive:

- if $v_p > v_g \implies normal$ dispersion
- if $v_g > v_p \implies anomalous\ dispersion$

When we have the condition $v_p = v_g$ we say that medium is non dispersive.

LM-7: Fourier Transform and Heisenberg's Uncertainty Principle H2

H3 Heisenberg's Uncertainty Principle

1. In terms of momentum and position

$$
\Delta p_k \cdot \Delta k \geq \frac{\hbar}{2} \text{ where } k \in \{x,y,z\}
$$

2. In terms of energy and time

$$
\Delta E \cdot \Delta t \geq \frac{\hbar}{2}
$$

H2 LM-8: The Schrödinger Equation and its properties

H3 Schrödinger Equation

Time Dependent Schrödinger Equation(TDSE)

$$
\cdot \frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + U \Psi = i \hbar \frac{\partial \Psi}{\partial t}
$$

Time Independent Schrödinger Equation(TISE)

$$
-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2}+U\Psi=E\Psi
$$

Normalisation of a wave function

$$
\int_{-\infty}^{\infty} |\Psi(x)|^2 dx = 1
$$

H3 Observables and Operators

For a normalised wave function:

$$
\langle o \rangle = \int_{-\infty}^{\infty} \Psi^* \hat{O} \Psi dx
$$

$$
\langle o^2 \rangle = \int_{-\infty}^{\infty} \Psi^* \hat{O}^2 \Psi dx
$$

H3 Eigen functions and values

$$
\hat{O}\Psi=e\Psi
$$

- Ψ is an Eigen function of the operator \hat{O}
- e is the Eigen value

H2 LM-9: Free Particle

We take the potential to be 0 and the energy of the particle to be some value E .

Now, we can solve the Schrodinger equation in the following way:

$$
-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2}=E\Psi
$$

Solving this, we get simply,

$$
\Psi=A\sin kx+B\cos kx
$$

H2 LM-10: Particle in a Box

H3 The equation

The form of the potential energy for a particle in a box is

$$
V(x)=\left\{\begin{matrix}0&0\leq x\leq L\\\infty&else\end{matrix}\right.
$$

The Schrodinger equation for a particle in a box is as follows

$$
-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2}=E\Psi
$$

Solutions:

$$
\Psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right)
$$

$$
k = \frac{n\pi}{L} = \frac{\sqrt{2m}}{\hbar}
$$

$$
n = 1, 2, 3...
$$

Expression for energy:

$$
E_n=\frac{\hbar^2 k^2}{2m}=n^2\frac{\hbar^2 \pi^2}{2mL^2}=n^2\frac{h^2}{8mL^2}
$$

The minimum energy which the system has in its ground state is called the Zero Point Energy.

H3 Orthonormality

Whenever $n \neq m$:

$$
\langle \Psi_m|\Psi_n\rangle=0
$$

H3 Adding time dependence

The time dependent solution of the above general equation can be found by multiplying a factor of $\exp(-iE_nt/\hbar)$

$$
\Psi_n(x,t)=\sqrt{\frac{2}{L}}\sin\Bigl(\frac{n\pi}{L}x\Bigr)\exp(-iE_nt/\hbar)
$$

To find E_n the formula mentioned before can be used.

Probability of observing a particular wave function on H3 measurement

The probability is proportional to the square of its coefficient

$$
P(n)=\left\vert c_{n}\right\vert ^{2}
$$

Finding the coefficient of a particular state in an arbitrary H3 solution

- Take the function Ψ at $t=0$
- Now take the conjugate of the function $\Psi_n(x)$, which will be Ψ_n^*
- Now simply find the following integral(assuming normalization)

$$
C_n=\langle \Psi_n(x)|\Psi(x,0)\rangle=\int_{-\infty}^{\infty}\Psi_n^*(x)\Psi(x,0)dx
$$

H3 Finding Energy of the general solution

$$
\langle \hat{H} \rangle = \sum_{i=1}^n c_i^2 E_i
$$

H2 LM-11: Particle in Finite Potential Box

In this case we consider the potential to look like:

$$
V(x)=\left\{\begin{matrix}0&0\leq x\leq L\\V_0&else\end{matrix}\right.
$$

H3 Solutions of TISE for regions of constant potential

If $E < V_0$

$$
\Psi=A\exp(\alpha x)+B\exp(-\alpha x)\\[4mm] \alpha=\sqrt{\frac{2m(V_0-E)}{\hbar^2}}
$$

If $E > V_0$

$$
\Psi=A\exp(ikx)+B\exp(-ikx)=A'\sin kx+B'\cos kx
$$

$$
k=\sqrt{\frac{2m(E-V_0)}{\hbar^2}}
$$

H3 Solution of TISE for Particle in a finite box

 Ψ_1, Ψ_2, Ψ_3 correspond to the regions $(-\infty, 0), (0, L)$ and (L, ∞) respectively.

We are considering $E < V_0$.

$$
\Psi_1 = A \exp(\alpha x) + B \exp(-\alpha x)
$$

$$
\Psi_2 = C \sin kx + D \cos kx
$$

$$
\Psi_3 = G \exp(\alpha x) + H \exp(-\alpha x)
$$

The boundary conditions:

$$
\begin{aligned} \Psi_1(0) &= \Psi_2(0) \\ \Psi_3(0) &= \Psi_2(0) \\ \Psi_1'(0) &= \Psi_2'(0) \\ \Psi_3'(0) &= \Psi_2'(0) \\ \Psi_1(-\infty) &= 0 \\ \Psi_3(\infty) &= 0 \end{aligned}
$$

Some direct simplifications we get by the last two conditions are: $B = 0$ and $G = 0$

H3 Energy states for particle in a finite potential box

We won't really be finding the coefficients from the above equations, but rather a relation between the coefficients to get us a way to relate to the total energy of a stationary state.

First note that:

$$
\begin{aligned} \text{Define } k_0^2 &:= \frac{2mV_0}{\hbar^2}, \text{ then,} \\ \alpha^2 &= k_0^2 - k^2 \\ \implies \frac{\alpha}{k} &= \sqrt{\frac{k_0^2}{k^2} - 1} \\ \text{and } \frac{k_0^2}{k^2} &= \frac{V_0}{E} \\ \implies \frac{\alpha}{k} &= f'(E) = \sqrt{\frac{V_0}{E} - 1} \\ &= f(k) = \sqrt{\frac{(k_0 L/2)^2}{(k L/2)^2} - 1} \end{aligned}
$$

Now, also notice that by solving the equations in the previous section, we can obtain the following equation:

$$
\frac{\alpha \cos kL - k \sin kL}{\alpha \sin kL + k \cos kL} = -\frac{\alpha}{k} \n\frac{\alpha/k - \tan kL}{1 + \alpha/k \tan kL} = -\frac{\alpha}{k}
$$

Solving the above equation, we can obtain:

$$
\begin{aligned} \tan kL/2&=\alpha/k\\ \text{OR}\\ -\cot kL/2&=\alpha/k \end{aligned}
$$

Now using the above equation, we can solve for values of energy graphically. We will plot the graph taking $kL/2$ on the x axis and the value of each of the RHS and LHS functions on the y axis. The intersections of the graphs will give us the solutions.

Each purple line(graph of $\tan x$) in the above graph meets the x axis at $x = n\pi$ and each of the black lines(graph of $-\cot x$) meets the x axis at $x = (2n + 1)\pi/2$ where *n* is an integer. The green line is the graph of the function $f(k)$ as defined above.

H3 Penetration length

$$
\delta_n = \frac{1}{\alpha_n}
$$

H3 Approximation to infinite potential box

It can be approximated to an infinite potential box of length $L + 2\delta_n$. This this approximation may be used to attain approximate values of energy.

H2 LM-12: Step Potential, Scattering and Tunneling

H3 Basic Step potential

The potential in this case is of the form

$$
V(x)=\left\{\begin{matrix}0 & x<0\\ V_0 & x>0\end{matrix}\right.
$$

The solution to the TISE will look like

$$
\begin{aligned} \text{for } E > V_0 \\ \Psi_1 &= A e^{ik_1 x} + B e^{-ik_1 x} \\ \Psi_2 &= C e^{ik_2 x} + D e^{-ik_2 x} \\ \text{for } E < V_0 \\ \Psi_1 &= A e^{ikx} + B e^{-ikx} \\ \Psi_2 &= D e^{\alpha x} + C e^{-\alpha x} \end{aligned}
$$

Where α, k, k_1 and k_2 take their regular values based on the potential in their region and the total energy.

 Ψ_1 and Ψ_2 correspond to the first and second region respectively.

Consider the case $E > V_0$.

It is elementary to see that $D = 0$. The rest of the coefficients can be found by applying boundary conditions:

$$
\begin{aligned} \Psi_1 &= A\left[e^{ik_1x}+\left(\frac{k_1-k_2}{k_1+k_2}\right)e^{-ik_1x}\right] \\ \Psi_2 &= A\left[\left(\frac{2k_1}{k_1+k_2}\right)e^{ik_2x}\right] \end{aligned}
$$

H4 Transmission and Reflection coefficients

Transmission and reflection coefficients add up to 1

$$
T+R=1
$$

For the case where $E > V_0$

$$
R = \frac{k_1}{k_1}\bigg|\frac{B}{A}\bigg|^2 = \frac{k_1}{k_1}\bigg|\frac{k_1 - k_2}{k_1 + k_2}\bigg|^2 = \frac{(k_1 - k_2)^2}{(k_1 + k_2)^2} \\ T = \frac{k_2}{k_1}\bigg|\frac{C}{A}\bigg|^2 = \frac{k_2}{k_1}\bigg|\frac{2k_1}{k_1 + k_2}\bigg|^2 = \frac{4k_1k_2}{(k_1 + k_2)^2}
$$

For the case where $E < V_0$

Now, we will simply replace k_1 with k and k_2 with $i\alpha$, giving us:

$$
R = \frac{k}{k} \left| \frac{k - i\alpha}{k + i\alpha} \right|^2 = 1
$$

H4 Penetration length

We define penetration length for the case where $E < V_0$ as:

$$
\delta = \frac{1}{\alpha}
$$

H3 Step potential of finite width and Tunneling

The potential is of the form

$$
V(x) = \begin{cases} 0 & x < 0 \\ V_0 & 0 < x < L \\ 0 & x > L \end{cases}
$$

H4 Form of solutions

$$
\begin{aligned} \Psi_1 &= Ae^{ikx}+Be^{-ikx}\\ \text{for } E > V_0\\ \Psi_2 &= Ce^{ik'x}+De^{-ik'x}\\ \text{for } E < V_0\\ \Psi_2 &= De^{\alpha x}+Ce^{-\alpha x}\\ \Psi_3 &= Fe^{ikx}+Ge^{-ikx} \end{aligned}
$$

Where α, k and k' take their regular values based on the potential in their region and the total energy.

Again, we get that G=0.

The rest of the coefficients can be found by applying the boundary conditions

H4 Reflection and Transmission coefficient

The reflection and transmission coefficients are defined as

$$
R = \left| \frac{B}{A} \right|^2, T = \left| \frac{F}{A} \right|^2
$$

We also have the relation:

 $T+R=1$

By solving for the coefficients, we arrive at the following formula for transmission coefficient

$$
\begin{aligned} & \text{for } E < V_0 \\ & T = \left[1 + \frac{1}{4} \frac{V_0^2}{E(V_0 - E)} \sinh^2 \alpha L \right] \\ & \text{for } E > V_0 \\ & T = \left[1 + \frac{1}{4} \frac{V_0^2}{E(E - V_0)} \sin^2 k' L \right]^{-1} \end{aligned}
$$

The maximum value($T_{max} = 1$) of T will be achieved when $\sin k'L = 0$, ie, $k'L = n\pi$. Only certain values of L will give this result. This effect is called resonance.

H4 Penetration length

We define penetration length for the case where $E < V_0$ as:

$$
\delta = \frac{1}{\alpha}
$$

H2 LM-14: Quantum Harmonic Oscillator

The potential function in the case of a QHO looks like

$$
V(x)=\frac{1}{2}kx^2=\frac{1}{2}m\omega^2x^2
$$

Ground state solution

$$
\Psi(x)=Ae^{-Bx^2}
$$

"A" can be found using the normalization condition, using which we get $A=\sqrt{B}/\pi^{1/4}$

Higher solutions:

n E_n
$$
\psi_n(x)
$$

\n0 $\frac{1}{2}\hbar\omega_0 \left(\frac{\beta^2}{\pi}\right)^{1/4} e^{-\beta^2 x^2/2}$
\n1 $\frac{3}{2}\hbar\omega_0 \left(\frac{\beta^2}{\pi}\right)^{1/4} \sqrt{\frac{1}{2}} 2\beta x e^{-\beta^2 x^2/2}$
\n2 $\frac{5}{2}\hbar\omega_0 \left(\frac{\beta^2}{\pi}\right)^{1/4} \sqrt{\frac{1}{8}} (4\beta^2 x^2 - 2) e^{-\beta^2 x^2/2}$
\n3 $\frac{7}{2}\hbar\omega_0 \left(\frac{\beta^2}{\pi}\right)^{1/4} \sqrt{\frac{1}{48}} (8\beta^3 x^3 - 12\beta x) e^{-\beta^2 x^2/2}$
\n4 $\frac{9}{2}\hbar\omega_0 \left(\frac{\beta^2}{\pi}\right)^{1/4} \sqrt{\frac{1}{384}} (16\beta^4 x^4 - 48\beta^2 x^2 + 12) e^{-\beta^2 x^2/2}$

Energy values

$$
E_n = \left(\frac{1}{2} + n \right) \hbar \omega
$$

$$
n = 0, 1, 2...
$$

LM-15: Application of Quantum Phenomena in higher dimensions H2

We simply assume the function to be a product of its "components"(not really) in the three directions

$$
\Psi(x,y,z)=X(x)Y(y)Z(z)
$$

Now, after putting this into the TISE, we can see that this can be treated independently in all three directions, the way we have been solving them in 1D.

Thus, each one of X, Y, Z is an independent solution of the 1D form and depends on a three independent parameters, say n_x, n_y, n_z .

$$
E(n_x,n_y,n_z)=E_x(n_x)+E_y(n_y)+E_z(n_z)\\
$$

H2 LM-16: Fundamentals of Statistical Mechanics

H3 Number of particles by energy

 $dN(E) = f(E)q(E)dE$

is the number of particles between energies E and $E + dE$.

- \bullet $f(E)$ is called the **distribution function**
- \bullet g(E)dE is called the **density of states**

H3 Types of Particles

¹ The wave function row refers to symmetry of the wave function with respect to exchange of variables

H2 LM-17: Density of States

In the quasi-continuous limit, we say that:

$$
g_i \to g(E) dE
$$

H3 Density of states(in 3D) for particle in a box

$$
g(\epsilon)d\epsilon = \frac{V}{4\pi^2}\bigg(\frac{2m}{\hbar^2}\bigg)^{3/2}\sqrt{\epsilon}\,d\epsilon
$$

This expression is sometimes divided by volume to obtain density of states per unit volume.

In case of fermions, we must multiply by a "degeneracy factor", which is 2 for the case of electrons.

H2 LM-18: Classical distribution function

H3 The dominant configuration

The configuration that has the highest probability of occurring out of all the others is called the dominant configuration or equilibrium configuration.

The constraints within which we maximize are:

$$
\sum N_i = N
$$

$$
\sum N_i E_i = E
$$

where N_i is the number of particles in states having energy E_i

H3 Maxwell-Boltzmann statistics

Number of micro-states for a configuration with N_i classical particles in a state of energy E_i with degeneracy of g_i :

$$
\frac{N!}{\prod N_i!}\prod g_i^{N_i}
$$

H4 Discrete energy states

Where g_i is the degeneracy of the states with energy E_i and N_i is the total number of particles in all energy states with energy E_i

$$
N_i=g_iA\exp(-E_i/kT)\\ \text{where }A=\frac{N}{\sum g_i\exp(-E_i/kT)}
$$

This can also be expressed in the form of probability as:

$$
P_i = \frac{N_i}{N}
$$

H4 Quasi-continuous energy states

$$
f_{MB}(\epsilon) = A \exp(-\epsilon/kT)
$$

where
$$
A = \frac{N}{\int g(\epsilon) \exp(-\epsilon/kT) d\epsilon}
$$

The value of A is calculated using the expression for total number of particles.

H2 LM-19: Quantum Distribution functions

H3 Bose-Einstein statistics

Number of micro-states for a configuration with N_i bosons in a state of energy E_i with degeneracy of g_i :

$$
\prod\frac{(N_i+g_i-1)!}{N_i!(g_i-1)!}
$$

We maximize the above expression to find the dominant state and arrive at the condition for the Bose-Einstein statistics to obtain:

$$
N_i = \frac{g_i}{A \exp(E_i/kT)-1}
$$

In the quasi-continuous approximation, we get:

$$
f_{BE}(\epsilon)=\frac{1}{A\exp(\epsilon/kT)-1}
$$

The value of A is calculated using the expression for total number of particles.

H3 Fermi-Dirac statistics

Number of micro-states for a configuration with N_i fermions in a state of energy E_i with degeneracy of q_i :

$$
\prod \frac{g_i!}{N_i!(g_i-N_i)!}
$$

We maximize the above expression to find the dominant state and arrive at the condition for the Fermi-Dirac statistics to obtain:

$$
N_i = \frac{g_i}{\exp((E_i - E_F)/kT) + 1}
$$

In the quasi-continuous approximation, we get:

$$
f_{FD}(\epsilon)=\frac{1}{\exp((\epsilon-\epsilon_f)/kT)+1}
$$

In this equation, the constant that should have been there, has been replaced by the term ϵ_F or the Fermi Energy.

NOTE: At $T = 0K$, the Fermi-Dirac function becomes 1 at all values of ϵ that are less than ϵ_F and 0 for all values that are larger

H2 Some more topics

H3 Relativistic effects

When to consider it:

- v is close to c
- Energy/Kinetic Energy of electron is comparable to or larger than rest energy of electron($m_ec^2 = 511 keV$)

What are the effects of considering relativity:

- $E_{total} = \sqrt{m_0^2 c^4 + p^2 c^2}$, this includes the rest mass energy
- $KE = E_{total} m_0 c^2$, where $E_{rest} = m_0 c^2$
- Now you may not use $KE = p^2/2m$ and should use only the above definition

H3 Dirac notation

Not needed in the exam, but I have used it in this document, so here it is(there is more to it than this, but for us, this is enough):

$$
\langle A|B \rangle = \int A^* B \, dx
$$

$$
\langle A|\hat{O}B \rangle = \langle A|\hat{O}|B \rangle = \int A^* \hat{O}B \, dx
$$